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ARTICLE INFO ABSTRACT

Keywords:

Habitat fragmentation reduces floral color diversity in plant communities, thus resulting in a shift in bee
pollinator color preferences, as shown by altered visitation frequency. We conducted a two-year survey of plant-
bee interactions on 41 islands and adjacent mainland habitats in a reservoir island system of eastern China.
Results showed that bee-blue-green and bee-blue dominated the floral color composition and that a reduction in
island area significantly reduced floral color diversity. Visitation frequencies to bee-blue-green, bee-ultraviolet-
blue, and bee-ultraviolet-green flowers declined significantly as island area decreased. These changes in floral
color diversity altered the color preferences of bees, as shown by the significantly impacted total floral visitation
frequencies. The preference for bee-blue-green flowers increased as island area increased, while floral resources
showed no significant effect on visitation frequencies. In sum, these results improve our understanding of how
pollinators adapt their behavior in fragmented habitats and provide important insights supporting the conser-
vation of floral color diversity as well as the plant species associated with the colors that correspond to a high
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visitation frequency.

1. Introduction

Pollinators exhibit distinct preferences for floral colors, which alert
pollinators of certain floral traits, provide the most accurate and stable
signal for flower localization and play a unique role in pollinator
attraction (Carvalho et al., 2012; Fenster et al., 2004; Francisco and
Ascensao, 2024; Shrestha et al., 2013). One of the most vital pollinators,
bees possess trichromatic color vision with photoreceptors maximally
sensitive in the ultraviolet, blue, and green wavelengths of light
(Chittka, 1992; Peitsch et al., 1992), but they display limited respon-
siveness to long-wavelength red light. Consequently, bees exhibit a
pronounced preference for blue and purple flowers (Briscoe and Chittka,
2001; Dyer et al., 2021; Raine and Chittka, 2007; Streinzer et al., 2021;
van der Kooi et al., 2021). Floral color is closely linked to bee foraging
efficiency, and bees forage on blue flowers more rapidly and accurately

than on red ones (Telles et al., 2017). Furthermore, bee-seeking flowers
typically exhibit enhanced short-wavelength reflectance and heightened
color contrast in the range of a bee’s visual perception (de Camargo
et al., 2019). These features contribute to differences in bee visitation
frequencies across floral colors. At the same time, bees often prefer
colors corresponding to plant species that offer essential nutrition
(Chittka et al., 1999; Viana et al., 1997), and they tend to serve as key
pollinators for these plants (Ballantyne et al., 2017; Kandori, 2002;
Vazquez et al., 2005). Thus, conserving plants with floral colors that
correspond to high visitation frequencies is critical for sustaining bee
diversity and the stability of plant-bee mutualistic interactions.

The frequency of bee visits to specific flowers is influenced by mul-
tiple factors, with floral color diversity (FCD) (Chittka et al., 1999; Tai
etal., 2020) and floral resources (Marques et al., 2018; Samnegard et al.,
2015) being particularly important. Conservation efforts should focus on

* This article is part of a Special issue entitled: ‘Species interactions’ published in Biological Conservation.

* Corresponding authors.

E-mail addresses: 22207037 @zju.edu.cn (H. Xie), renpeng@zju.edu.cn (P. Ren), zhucheneco@zju.edu.cn (C. Zhu), juanliu@zju.edu.cn (J. Liu), sunminghao@zju.

edu.cn (M. Sun), sixf@des.ecnu.edu.cn (X. Si), dingping@zju.edu.cn (P. Ding).

https://doi.org/10.1016/j.biocon.2025.111322

Received 28 April 2025; Received in revised form 6 June 2025; Accepted 16 June 2025

Available online 25 June 2025

0006-3207/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:22207037@zju.edu.cn
mailto:renpeng@zju.edu.cn
mailto:zhucheneco@zju.edu.cn
mailto:juanliu@zju.edu.cn
mailto:sunminghao@zju.edu.cn
mailto:sunminghao@zju.edu.cn
mailto:sixf@des.ecnu.edu.cn
mailto:dingping@zju.edu.cn
www.sciencedirect.com/science/journal/00063207
https://www.elsevier.com/locate/biocon
https://doi.org/10.1016/j.biocon.2025.111322
https://doi.org/10.1016/j.biocon.2025.111322
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2025.111322&domain=pdf

H. Xie et al.

both characteristics of flowers. FCD exhibits variation that generally
correlates positively with plant species richness at the habitat level
(Binkenstein et al., 2013). Similarly, floral resources correlate strongly
with plant abundance because higher abundance increases resource
availability and consequently enhances pollinator visitation (Ebeling
et al., 2008; Lazaro et al., 2020). However, most extant studies have
focused on total floral resources, which highlights the need for finer-
scale investigations partitioned by specific traits such as floral color.
Importantly, habitat fragmentation can exert combined effects on FCD
and floral resources through modifying species composition and di-
versity (Haddad et al., 2015; Thornton et al., 2011). Nevertheless, the
current body of research lacks data on how habitat fragmentation alters
FCD and floral resources in terms of floral colors and how they collec-
tively shape bee visitation patterns.

Habitat fragmentation alters species diversity and composition
through its effects on habitat area and isolation. It has been shown to
reduce species persistence and movement among patches, consequently
lowering interaction richness and abundance between plants and polli-
nators (Haddad et al., 2015; Santamaria et al., 2018). For bees, habitat
fragmentation disrupts the functionality of pollination services (Mayer
et al., 2012; Smith and Mayfield, 2018; Warzecha et al., 2016). Corre-
spondingly for plants, habitat fragmentation disrupts their reproductive
success (Lazaro et al., 2020). Such shifts in community composition have
gradually induced floral color homogenization (Shrestha et al., 2016),
thereby resulting in diminished FCD and floral resources. These changes
may further modify bee visitation frequencies and preferences across
floral colors in fragmented habitats. Collectively, these pieces of evi-
dence highlight the necessity to investigate how variations in floral color
traits and floral resources jointly influence bee visitation patterns in
fragmented habitats.

Fragmentation alters species composition along with FCD and floral
resources in habitats. These combined effects modify bee foraging
behavior and color preferences, as reflected in differential bee visitation
frequencies across floral colors. Plant species richness and abundance
generally increase as habitat area increases (Hu et al., 2019; Liu et al.,
2019; Wilson et al., 2020), suggesting a positive correlation between
FCD and habitat area. Habitat fragmentation will alter the floral re-
sources and the relative abundance of floral colors, even promoting
dominance of specific colors. By analyzing variation in FCD, floral re-
sources, the relative abundance of floral colors and bee visitation fre-
quencies in fragmented habitats, we can assess whether habitat
fragmentation induces shifts in bee color preferences and uncover the
mechanisms behind such behavioral changes. This approach could
advance our understanding of pollinator behavioral adaptations in
fragmented landscapes, support predictions of plant-pollinator in-
teractions, and inform targeted conservation strategies tailored to
habitat-specific floral color composition and visitation dynamics.

Here, we hypothesize that habitat fragmentation alters floral color
composition within habitats through its area and isolation effects,
thereby reducing FCD and floral resources, which subsequently drives a
shift in bee color preferences. In this study, we aim to determine whether
bee color preferences have changed and to examine the mechanisms by
which fragmentation influences bee visitation frequencies, with an
emphasis on indirect effects mediated by FCD and floral resources. Then,
we discuss how best to conserve plant-bee interactions and associated
plant species in fragmented landscapes by adjusting the floral color
composition.

2. Materials and methods
2.1. Study site

This study was conducted in the Thousand Island Lake (TIL), an
artificial reservoir formed in the 1950s by the construction of the

Xin’anjiang Dam in Chun’an County, Hangzhou, Zhejiang Province,
China (29°22-29°50'N, 118°34'-119°15'E). The lake has a surface area of
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~581 km? (water area: ~540 kmz; island area: ~41 km?). At the water
level of 108 m elevation, there are 1078 islands larger than 0.25 ha in
the reservoir (Si et al., 2024). The boundaries of forested islands are
distinct, with the surrounding matrix composed entirely of water, and
the habitats exhibiting relative environmental homogeneity. The isola-
tion and formation time of habitats across different islands remains
largely consistent throughout. These islands originated during the par-
titioning of a discontinuous mainland and became isolated as islands of
varying size and isolation levels when the water level rose in 1959.
Notably, the vegetation has experienced synchronous development
across the islands and in the mainland under identical initial environ-
mental conditions, making this an ideal system in which to study habitat
fragmentation (Si et al., 2024; Zhong et al., 2021).

We selected 41 islands (seven large islands (>20 ha) and 34 small
islands) and 16 mainland sampling sites for field surveys (see Fig. 1 for
the spatial distribution of sampling sites and Table S1 for island attri-
butes). The selected islands spanned the broadest gradients of area and
isolation, and the mainland sites covered extensive spatial ranges and
contained similar types of vegetation to the islands. Fixed transects were
established at both the edge and interior of each sampling site, with
surveys conducted over two consecutive years.

2.2. Surveying bee visitation and floral resources

We conducted biweekly surveys at each site from March 22 to July
15, 2023, and from March 26 to July 23, 2024. In each year, we ran
seven replicated surveys. Each survey was carried out on days without
rain or strong winds during two time slots: 8:30-12:00 and 13:00-17:00.
At each site, we established fixed transects (100 m length x 4 m width)
in edge habitats with high flowering herb richness and in interior hab-
itats extending inward from the edge. At each visit, edge transects were
surveyed for 15 min and interior transects for 10 min. We recorded bee
visitations, which were defined as contact with anthers or stigmas on
flowers of herbs, shrubs, and trees within a vertical layer of 3.5 m above
ground. We identified bee species and estimated their abundance by
recording the visiting behavior through photographs or videos. We also
recorded flowering plant species and total floral area and collected
flowers to measure colors.

Due to limited manpower for the survey, we did not directly measure
the quantities of pollen or nectar for each kind of flower. However, we
observed that the quantities of each floral resource correlated positively
with floral size. Because larger flowers typically allocate more resources
than smaller ones, a greater floral size (floral area) or number leads to an
increase in total plant community resources (Dorado and Vazquez,
2014; Ortiz et al., 2021). Therefore, we used floral area as a proxy to
represent the amount of floral resources (Ren et al., 2023; Sponsler et al.,
2023). Floral area was subsequently categorized by color type to
quantify both the area and floral resources of distinct floral colors. We
quantified floral area using methods adapted to plant growth forms
(Dorado and Vazquez, 2014; Sutter et al., 2017). Specifically, floral area
of herbaceous species with dense floral aggregations (e.g., Pseudogna-
phalium affine and Cnidium monnieri) was quantified as the ground cover
area, while floral area of sparse-flowering species (e.g., Duchesnea ind-
ica) and large-flowered taxa (e.g., Rosa laevigata and Gardenia jasmi-
noides) was measured as perianth expansion area. In compact-flowered
shrubs and small trees with high floral density (e.g., Symplocos pan-
iculata), we modeled the canopies as spherical or conical three-
dimensional geometric shapes and calculated floral display area as the
total surface area of the idealized structure. Some lianoid species (e.g.,
Callerya dielsiana and Wisteria sinensis) and plants bearing elongated
inflorescences (e.g., Monochasma savatieri and Scutellaria indica) were
analyzed by modeling them as cylinders based on the radius-length of
their inflorescence, with floral area derived from the lateral surface area
of these cylinders.
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Fig. 1. Sampling sites at the Thousand Island Lake, China, showing 41 island st

udy sites (in green) and 16 mainland sampling sites (blue dots). (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

2.3. Measurement of floral color

Reflectance spectra of the samples were measured using an Ocean
Insight portable spectrometer (model SR-6UVV400-25; wavelength
range: 180-850 nm) with Ocean View software. The spectrometer sys-
tem consists of a deuterium-halogen light source (AvaLight-DHc:
200-2500 nm), a fiber optic probe, and a standardized white panel for
calibration. The experimental setup included the standard daylight
function (D65) for illumination and a green-leaf spectral reflectance
function (AV400) to define the background. Reflectance measurements
adopted a 90° angle, with PTFE as the white reference and a black
chamber as the black reference. Reflectance spectra were recorded over

the 300-700 nm wavelength range. Software parameters were set to
automatically save measurements every 100 ms, with six consecutive
scans collected and stored for each sample, thus resulting in six technical
replicates.

We used a customized three-layer dark cardboard box to minimize
ambient light interference when measuring flower color. The bottom
layer supported the samples, and the middle layer had a circular aper-
ture approximately 1 cm in diameter to expose the samples. The top
layer reinforced with three sheets of cardboard contained a 2 mm
aperture that aligned with the middle layer opening. This configuration
maintained a consistent 2-3 mm distance between the fiber optic probe
(positioned flush against the top layer) and the sample surface. All box
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layers featured a hinged design to facilitate efficient sample
replacement.

Measurements focused primarily on petal surfaces; though other
pigmented floral structures (receptacles, stamens, and pollen) were also
analyzed if visually conspicuous (Tai et al., 2020). For heterogeneously
colored samples, the color patches most dominant throughout the floral
area were selected. Reflectance values from multiple points were aver-
aged to generate composite spectral data for each flower (Shrestha et al.,
2024).

The color hexagon model (the CH model; schematic Fig. S1), which is
a graphical representation of bee visual perception (Chittka, 1992), was
applied to categorize floral colors. This validation framework general-
izes among all hymenopteran pollinators, thus allowing all bees to be
considered a unified group (Briscoe and Chittka, 2001; de Ibarra et al.,
2014). The CH model categorizes bee-perceived colors into six chro-
matic categories: ultraviolet (UV), UV-blue (UB), blue (B), blue-green
(BG), green (G), and UV-green (UG). These category names also desig-
nate the corresponding floral color types. Photoreceptor excitation
values were transformed into x/y coordinates within the CH model. The
area of the minimum convex polygon (MCP) encompassing all color loci
served as a quantitative measure of FCD (Tai et al., 2020). We processed
the spectral reflectance data using the procspec function and visualized
color loci in the CH model through the plot.colspace function from the
pavo package (v2.9.0) in R (Maia et al., 2019; Shrestha et al., 2024). FCD
(MCP) was calculated using the fd fric function from the fundiversity
package (v1.1.1) in R (Grenie and Gruson, 2023; Tai et al., 2020).

2.4. Data analysis

We examined the relationships between island-level FCD and island
variables (area in hectares and isolation in meters) using simple linear
regressions. Island area and isolation were log-transformed, and isola-
tion was measured as the straight-line distance to the nearest mainland
edge (Wang et al., 2010). We investigated the effects of fragmentation
on bee color preferences by examining the correlation between the
relative abundance of floral colors and the bee visitation frequencies. We
quantified the relative abundance of floral colors by calculating the
proportion of each floral color area throughout the total floral color area
within the island. The bee-ultraviolet floral color was excluded due to an
insufficient number of plant species exhibiting this color. We defined the
visitation frequency as the number of bees observed visiting flowers per
unit area of each floral color (Ellis et al., 2021; Oberrath and Bohning-
Gaese, 1999). Box-Cox transformations were applied to the data of the
relative abundance of floral colors and visitation frequencies by using
the boxcoxnc function from the AID package (v3.0). Then we performed
separate linear regressions of the transformed values against island area
and isolation. Structural equation models (SEMs) were constructed
using the psem function from the piecewiseSEM package (v2.3.0.1)
(Lefcheck, 2015), and these served to evaluate the effects of island area,
isolation, FCD, and floral resources (floral color area) on bee visitation
frequency. The hypothesized model is shown in Fig. S2, and a detailed
discussion of the hypothesized path can be found in Supplementary
Methods. All analyses were performed in R 4.4.1.

3. Results

We identified 3131 plant-bee interactions types from 7954 visitation
events, involving 90 bee species and 96 plant species visited by them
(Tables S2, S3). The t-tests comparing the areas of the MCP of floral
colors between plants visited by bees and all plants in the CH model
showed no significant differences (p > 0.05). This indicates that the
variation in floral color among plants visited by bees represents the
overall floral color variation (Fig. S3). Therefore, subsequent analyses
focused only on the plants visited by bees.

Some yellow flowers exhibited reflectance peaks in the UV spectrum,
and white flowers lacked distinct reflectance peaks in the visible
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spectrum (Fig. 2a; Fig. S4). Among the six color categories in the CH
model, the bee-blue-green contained the highest number of plant species
(50 species, 51 %), followed by bee-blue (21 species, 21.4 %). The bee-
ultraviolet category contained the fewest species (one species, 1 %)
(Fig. 2b). The MCP values of all color points in the CH model was 0.300,
which represents the FCD of plants visited by bees in the TIL (Fig. 2c).

The MCP values of study islands ranged from 0.033 to 0.264,
compared with the mainland value of 0.287. FCD on islands exhibited a
significant positive correlation with island area (# = 0.036, p < 0.001),
but no relationships with isolation ( = —0.053, p > 0.1) (Fig. 3a, b;
Table S4).

The relative abundance of bee-blue and bee-UV-green floral colors
exhibited strong positive correlations with island area (§ = 0.192 and
0.173, p < 0.001), whereas bee-blue-green displayed a significant
negative correlation (f = —0.177, p < 0.001). In contrast, bee-green and
bee-UV-blue floral colors exhibited no significant trends with island area
(p = 0.025 and — 0.046, p > 0.05). None of the floral color categories
correlated significantly with isolation (p > 0.05) (Fig. 4a, b; Table S4).
Bee visitation frequencies were significantly positively correlated with
island area for bee-blue-green, bee-UV-blue, and bee-UV-green floral
colors (f = 0.171, 0.134 and 0.178, p < 0.01), while bee-blue and bee-
green floral colors exhibited no area-dependent patterns (f = 0.046 and
—0.014, p > 0.1). Visitation frequencies were unrelated to isolation for
all floral colors (p > 0.05) (Fig. 4c, d; Table S4).

Four of the eight hypothesized paths were retained in the final SEM,
and the variable of isolation was removed. The total visitation frequency
of bees was significantly influenced by FCD, whereas total floral re-
sources had no significant effect (p > 0.05) (Fig. 5; Table S5). Bee-blue-
green was the only floral color for which visitation frequency was
significantly affected by the island FCD (p < 0.01) (Fig. 6a; Table S5),
while floral resources had no significant effect on the visitation fre-
quencies of any floral color type (p > 0.05) (Fig. 6a, e; Table S5).

4. Discussion

In this study, we examined floral color composition, diversity, and
bee visitation frequency across 41 islands and 16 mainland sites in the
TIL to investigate what extent bee color preferences shift in fragmented
habitats and to identify the underlying mechanisms. The floral color
composition in the TIL was predominantly bee-blue-green and bee-blue,
and islands of a smaller area had a significantly reduced FCD. Bee visi-
tation frequencies to bee-blue-green, bee-UV-blue, and bee-UV-green
flowers increased as island area increased, which suggests that islands
of a smaller area experience reduced visitation frequencies for specific
colors. Habitat fragmentation altered bee color preferences: as island
area increased, bees shifted their visitation preference from bee-blue and
bee-green to the bee-blue-green floral color type. Total bee visitation
frequency shows significant dependence on FCD, while floral resources
exhibited no significant effect. However, among all floral color types,
FCD exhibited a significant effect only on bee-blue-green flower visita-
tion frequency, suggesting that fragmentation-induced preference shifts
in bees may be primarily mediated by changes in FCD. From a conser-
vation perspective, enhancing FCD on smaller islands and protecting the
species associated with high-visitation floral color types is critical for
sustaining mutualistic interactions between plants and pollinators.

4.1. FCD increases with island area

FCD correlates positively with plant species diversity (Binkenstein
et al., 2013; Tai et al., 2020), while habitat fragmentation exerts sig-
nificant negative effects on it (Santamaria et al., 2018; Sonnier et al.,
2014). In the TIL, plant species diversity demonstrated a significant
positive relationship with island area (Hu et al., 2019; Liu et al., 2019), a
pattern consistent with the increase in FCD as island area increased.
Smaller islands typically have relatively low plant species richness and
abundance. To maximize pollinator attraction, rare species may exhibit
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-0.34

Fig. 2. Reflectance spectra of floral colors from the Thousand Island Lake, spatial distribution of floral color loci within the color hexagon model (CH model), and the
minimum convex polygon (MCP) formed by these loci. Reflectance spectra of floral colors for plant species visited by bees, with the horizontal axis representing
wavelengths ranging from 300 to 700 nm and the vertical axis indicating reflectance percentages of floral colors at corresponding wavelengths. Each spectral curve
corresponds to a distinct plant species and its color represents the actual color of the flower (a). The distribution of floral color loci is shown in the CH model,
accompanied by representative photos of plants occupying specific chromatic regions. Red arrows indicate the locations of these plants’ floral color loci within the
model (b). The MCP encompassing all loci in the CH model and its calculated area, which represents bee-perceived floral color diversity (c). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Effects of habitat fragmentation on the island floral color diversity (FCD) in the Thousand Island Lake. The linear regression analyses between the FCD and
island area (a) or isolation (b). Solid lines indicate significant correlations, while dashed lines denote non-significant relationships. Red dots represent the mainland.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

flower colors resembling those of more abundant or nutrient-rich species
(Benitez-Vieyra et al., 2007; Johnson et al., 2003; Lunau and Wester,
2017). This adaptive strategy enhances pollinator attraction and im-
proves the reproductive success of rare species (Bergamo et al., 2020;
Camargo et al., 2023). Over time, floral color convergence within these
habitats reduces overall FCD on smaller islands. Plant dispersal among
islands remains effective despite isolation distances and the aquatic
matrix, with seeds transported by both abiotic agents (wind, water
currents) and biotic dispersers (mammals, birds) (Howe and Miriti,
2000, 2004; Zhu et al., 2025). Isolation generally exhibits no significant
effect on plant species richness (Tu et al., 2019; Zhao et al., 2020) and,
consequently, exerts minimal influence on FCD.

Furthermore, FCD demonstrated a strong positive correlation with
bee species diversity (Fig. S5), highlighting its dual role in structuring
both plant and pollinator assemblages. The decline in pollinator di-
versity and abundance could also increase the selective pressure on
plants. Plants that adapt to these changes while maintaining reproduc-
tive success will persist. As bee diversity decreases, floral colors that
effectively attract bees have the competitive advantage, leading to a
convergence in floral color composition toward phenotypes favored by
bees in fragmented habitats under competitive scenarios (Bergamo

et al., 2020; de Jager et al., 2011; Newman et al., 2014). Consequently,
this convergence will reduce the FCD of plant communities.

4.2. Bee color preferences reflected in visitation frequencies

With increasing island area, bee visitation frequencies rose signifi-
cantly for plants with bee-blue-green flowers, despite a concurrent
decline in the relative abundance of this floral color. This indicates a
shift in bee color preferences toward bee-blue-green. Bee foraging
strategies adaptively shift under resource constraints (Gomez-Martinez
etal., 2020; Lazaro and Piazzon, 2015), reflecting trade-offs in resources
(Jones et al., 1998). This preference is particularly pronounced in
resource-limited habitats, where bees rely on foraging strategies to
ensure stable food acquisition (Cakmak et al., 2010; Raine and Chittka,
2007; Telles et al., 2017).

The nutritional resources provided by floral rewards, primarily pol-
len and nectar, play a significant role in attracting pollinators. In our
study region, several highly abundant species offer substantial rewards.
For example, Sinosenecio oldhamianus, Rosa laevigata and Rosa bracteata
exhibit high pollen production (Ortiz et al., 2021), Cayratia japonica,
Leonurus artemisia and Triadica sebifera are characterized by abundant
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Fig. 5. The effects of island area and floral color traits on total bee visitation
frequency in the Thousand Island Lake. Structural equation model (SEM) il-
lustrates that the total bee visitation frequency was influenced by floral color
diversity (FCD) and total floral resources, representing the overall pattern in
our system. Blue arrows indicate positive relationships, red arrows denote
negative relationships, solid lines represent significant effects, and dashed lines
indicate nonsignificant pathways. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

nectar (Clark and Howard, 2019; Na et al., 2024), and Gardenia jasmi-
noides, Symplocos paniculate and Wisteria sinensis serve as both nectar and
pollen sources (Pinto et al., 2021; Yao et al., 2006). Plants with bee-blue
and bee-green flowers include some nectar-rich species such as Leonurus
artemisia (bee-blue) and Triadica sebifera (bee-green). At the same time,
the reflectance spectra of bee-blue and bee-green fall within the sensi-
tivity range of bee photoreceptors (Chittka, 1992; Peitsch et al., 1992).
When bees learn to forage, they perceive these two floral colors most
readily. This drives them to visit plants displaying such colors. When
adopting this learned foraging strategy, bees lower their energy

consumption (Internicola et al., 2009; Muth et al., 2015), which is
particularly advantageous on small islands with limited resources. As
floral resources become more abundant in conjunction with an increase
in island area, bees develop learned preferences for alternative floral
colors (Amaya-Marquez et al., 2008; Giurfa et al., 1995; Makino and
Sakai, 2007), and these behavioral adaptations are transmitted across
bee species (Romero-Gonzalez et al., 2020). This drives collective
foraging to shift toward favoring high-reward plants (Mokkapati et al.,
2024; Nityananda and Chittka, 2021), particularly those with bee-blue-
green flowers. Plants with bee-blue-green flowers, like Rosa bracteata
and Rosa laevigata, are associated with larger floral displays that signal
greater nutritional rewards (Herrera, 2020; Lobo et al., 2016; Ortiz
et al., 2021; Tavares et al., 2016), which explains their enhanced
attractiveness in larger habitats.

The four major bee taxa, honeybees (Apis), carpenter bees (Xylo-
copa), halictid bees (Halictidae), and bumblebees (Bombus), shifted
their color preferences from bee-blue and bee-green to bee-blue-green as
island area increased (Fig. S6). This transition suggests that habitat
fragmentation induces plasticity in pollinator behavior. Because hon-
eybees, carpenter bees, and bumblebees exhibit pronounced competitive
interactions (William and Deborah, 1979) with potential niche overlap
(Goulson et al., 2002), this results in floral resource partitioning among
these taxa. For instance, bumblebees employ flexible foraging strategies
to adapt to resource fluctuations caused by competition. They may shift
preference to plants with alternative floral colors if resources are more
abundant (Inouye, 1978; Ye et al., 2024). Simultaneously, carpenter
bees, which are characterized by their generalist feeding habits, utilize
diverse floral resources without strict color specificity (Keasar, 2010;
Raju and Rao, 2006). This behavioral divergence promotes floral
resource partitioning through differential plant species selection among
these taxa. With their smaller size and lower nutritional demand, hal-
ictid bees obtain nutrients from a diverse range of small-flower species
such as Mazus japonicus (Suetsugu et al., 2016). Although halictid bees
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Fig. 6. The effects of island area and floral color traits on bee visitation frequencies to different floral colors in the Thousand Island Lake. The SEMs reveal that island
area indirectly affects visitation patterns through its mediation of both island FCD and floral resources of specific colors. Corresponding to five flower colors types:
bee-blue-green (a), bee-blue (b), bee-green (c), bee-UV-blue (d), and bee-UV-green (e). Blue arrows indicate positive relationships, red arrows denote negative
relationships, solid lines represent significant effects, and dashed lines indicate nonsignificant pathways. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

exploit a broader range of floral resources and exhibit generalized color
preferences, they still display a pronounced foraging bias toward bee-
blue-green flowers in larger habitats (Fig. S6c).

4.3. Bee color preference shifts mediated by FCD

Island area significantly influences FCD and floral resources, and
this, in turn, affects pollinator visitation frequency. Overall, FCD
significantly impacted total visitation frequency, but floral resources did
not. While prior studies link visitation frequency to floral abundance
(Abrol, 2006; Bishop et al., 2024), our study reveals that floral resources
exhibit no significant effect on bee visitation patterns within fragmented
habitats. These findings indicate that FCD serves as the primary visual
signal for attracting bees in fragmented environments, thereby offering a
new perspective for habitat conservation efforts.

Visitation frequencies to bee-blue-green flowers increased signifi-
cantly as island area increase, thus indicating a shift in bee color pref-
erence from bee-blue and bee-green to bee-blue-green. SEMs revealed
that island FCD significantly enhanced visitation frequency to plants
with bee-blue-green flowers, which is consistent with the overall pat-
terns observed in the TIL. On smaller islands, plants with bee-blue-green
flowers dominated. These included large-flowered shrubs (e.g., Rosa
bracteata) and trees (e.g., Symplocos paniculata) with high floral density,
and these species collectively occupied substantial blooming area.
Consequently, bee-blue-green flowers became the predominant floral
type on small islands, where this high single-color dominance corre-
sponded with low FCD. However, an increase in island area was asso-
ciated with greater plant species diversity (Hu et al., 2019; Liu et al.,
2019; Santamaria et al., 2018; Sonnier et al., 2014), which consequently
reduced the dominance of plants with bee-blue-green flowers. This shift
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generated a significant negative correlation between the relative abun-
dance of bee-blue-green flowers and island area. The decline in bee-blue-
green dominance has facilitated an increased in FCD, which has further
amplified visitation frequency to plants with bee-blue-green flowers.
This phenomenon reflects the intricate interaction between plants and
their environment.

4.4. Conservation strategies

Based on our findings, we propose a series of conservation strategies
to protect plant-pollinator interactions in fragmented habitats. In addi-
tion to preserving the existing plant species diversity on islands,
enhancing FCD through strategic introductions of certain colored plants
can further promote pollinator visitation and stabilize community
structure, particularly on islands with limited floral color types. On
smaller islands, any introduction of plant species should focus on bee-
preferred plants within the CH model in the bee-blue color category,
while concurrently aiming to strategically reduce the abundance and
spatial dominance of plants with bee-blue-green flowers. This approach
is expected to improve overall FCD and maintain baseline foraging re-
sources. Considering that small islands may also have some rare plants,
these would be part of unique plant-pollinator interaction types (Emer
et al., 2018; Libran-Embid et al., 2021). Therefore, protecting rare
species can also preserve distinct ecological values characterized by
their specialized interactions. On larger islands, conservation efforts
should prioritize protecting high-reward plants critical for bee survival,
such as Leonurus artemisia (bee-blue), Rosa bracteata (bee-blue-green),
and Triadica sebifera (bee-green). These species can provide substantial
nectar or pollen resources (Clark and Howard, 2019; Na et al., 2024;
Ortiz et al., 2021), further sustaining high diversity of plant-pollinator
interactions at the landscape level. Lastly, to mitigate ecological risks,
species introductions should be strictly limited to taxa endemic to the
TIL region, thereby preventing the potential establishment of invasive
species (Zhu et al., 2024).

5. Conclusions

This study examined floral color composition, diversity, and bee
color preference shifts in fragmented habitats considering the visual
perspective of bees. Our findings demonstrate that habitat fragmenta-
tion reduces plant species richness and consequently diminishes FCD on
islands, with bee-blue-green and bee-blue floral colors becoming the
dominant floral color types. A decrease in island area significantly re-
duces bee visitation frequencies for specific colors. In other words,
fragmentation drove a preference shift: as island area increased, bees
transitioned from predominantly visiting plants with bee-blue and bee-
green flowers to preferentially visiting plants with bee-blue-green
flowers. Overall, total bee visitation frequency was significantly influ-
enced by island FCD. At the level of specific colors, island FCD exclu-
sively enhanced visitation to bee-blue-green flowers, which indicates
that fragmentation-driven preference shifts are mediated by changes in
FCD. This study contributes to our understanding of pollinator behavior
plasticity in fragmented landscapes and provides critical insights for
predicting plant-pollinator interactions in fragmented habitats.
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